Getting Back on The Bike of Research: the Basics of Science Research

This week I moved back to the United States to work at my lab at the NIH for two months before my thesis defense in July. Not only was I in Oxford for 6 months, I was also concentrating on writing my thesis, and didn’t go into the lab except to meet with supervisors. So now I’m back in the lab on a daily basis and doing science. That said, I ‘m currently in the stage of simply accumulating supplies before I can do actually do any experiments.

Originally, the plan had been to simply write up, have my viva, and graduate, without returning back to the NIH. However, my examiners were busy, and couldn’t schedule by defense until July. This gives me some time now to return and try to generate more data. If the data is good, this means that I will have more work to support both my thesis defense and also to help make more coherent papers for publication. Since I’m only going to be back for 2 months, this really limits the scale of experiments that I can do, and certainly rules out completing any new transplant experiments since they take a minimum of 8 weeks to run, with the preparation and analysis times extra. However, I’ve come up with an experiment plan that closely matches what I’ve already done, but to take it a step further in some cases, or to simply do a more sophisticated study to glean better results.

I’m not concerned about coming back into the lab having been away for 6 months. With the exception of one major technique, all others are methods that I’ve done before. And I find that for planning and executing experiments, the logic and the process never change. It’s in line with belief that once you learn to ride a bike, you never really forget. I’ve been seriously studying science for 10 years now, 6 of which have been spent doing genuine research (instead of planned coursework experiments), and over time on learns the basics of experimental logic:

 

1)   How to choose an assay that will allow you to observe the specific factor you wish to

2)   How to minimize distraction by other factors by designing more simplistic experiments

3)   How to use proper controls to make sure that your experiment design is correct, even if the results you get are negligible or puzzling

4)   How to manage resources and time

5)   How to minimize human error (this involves knowing your personal limitations)

 

Over the next two months I’ll keep you informed about what I’m doing, the techniques and reasoning, and also my adventures into paper writing, along with updates on developments in tissue engineering and bone research.